2,097 research outputs found

    The lithium isotope ratio in the metal-poor halo star G271-162 from VLT/UVES observations

    Get PDF
    A high resolution (R = 110.000), very high S/N (>600) spectrum of the metal-poor turnoff star G271-162 has been obtained in connection with the commissioning of UVES at VLT/Kueyen. Using both 1D hydrostatic and 3D hydrodynamical model atmospheres, the lithium isotope ratio has been estimated from the LiI 670.8 nm line by means of spectral synthesis. The necessary stellar line broadening (1D: macroturbulence + rotation, 3D: rotation) has been determined from unblended KI, CaI and FeI lines. The 3D line profiles agree very well with the observed profiles, including the characteristic line asymmetries. Both the 1D and 3D analyses reveal a possible detection of 6Li in G271-162, 6Li/7Li = 0.02 +-0.01 (one sigma). It is discussed if the smaller amount of 6Li in G271-162 than in the similar halo star HD84937 could be due to differences in stellar mass and/or metallicity or whether it may reflect an intrinsic scatter of the Li isotope ratio in the ISM at a given metallicity.Comment: 5 pages with 6 figures. Accepted as a letter in A&

    O/Fe in metal-poor main sequence and subgiant stars

    Full text link
    A study of the O/Fe ratio in metal-poor main sequence and subgiant stars is presented using the [OI] 6300A line, the OI 7774A triplet, and a selection of weak FeII lines observed on high-resolution spectra acquired with the VLT UVES spectrograph. The [OI] line is detected in the spectra of 18 stars with -0.5 < [Fe/H] < -2.4, and the triplet is observed for 15 stars with [Fe/H] ranging from -1.0 to -2.7. The abundance analysis was made first using standard model atmospheres taking into account non-LTE effects on the triplet: the [OI] line and the triplet give consistent results with [O/Fe] increasing quasi-linearly with decreasing [Fe/H] reaching [O/Fe] ~ +0.7 at [Fe/H] = -2.5. When hydrodynamical model atmospheres representing stellar granulation in dwarf and subgiant stars replace standard models, the [O/Fe] from the [OI] and FeII lines is decreased by an amount which increases with decreasing [Fe/H]. The [O/Fe] vs [Fe/H] relation remains quasi-linear extending to [O/Fe] ~ +0.5 at [Fe/H] = -2.5, but with a tendency of a plateau with [O/Fe] ~ +0.3 for -2.0 < [Fe/H] < -1.0, and a hint of cosmic scatter in [O/Fe] at [Fe/H] ~ -1.0. Use of the hydrodynamical models disturbs the broad agreement between the oxygen abundances from the [OI], OI, and OH lines, but 3D non-LTE effects may serve to erase these differences.Comment: ps file, 18 pages (including 10 figures) - Accepted for publication in A&

    Carbon and oxygen in metal-poor halo stars

    Full text link
    Carbon and oxygen are key tracers of the Galactic chemical evolution; in particular, a reported upturn in [C/O] towards decreasing [O/H] in metal-poor halo stars could be a signature of nucleosynthesis by massive Population III stars. We reanalyse carbon, oxygen, and iron abundances in thirty-nine metal-poor turn-off stars. For the first time, we take into account three-dimensional (3D) hydrodynamic effects together with departures from local thermodynamic equilibrium (LTE) when determining both the stellar parameters and the elemental abundances, by deriving effective temperatures from 3D non-LTE Hβ\beta profiles, surface gravities from Gaia parallaxes, iron abundances from 3D LTE Feii equivalent widths, and carbon and oxygen abundances from 3D non-LTE Ci and Oi equivalent widths. We find that [C/Fe] stays flat with [Fe/H], whereas [O/Fe] increases linearly up to 0.750.75 dex with decreasing [Fe/H] down to 3.0-3.0 dex. As such [C/O] monotonically decreases towards decreasing [O/H], in contrast to previous findings, mainly by virtue of less severe non-LTE effects for Oi at low [Fe/H] with our improved calculations.Comment: 5 pages, 2 figures; published in A&A Letter

    The Oxygen Abundance of HE 1327-2326

    Full text link
    From a newly obtained VLT/UVES spectrum we have determined the oxygen abundance of HE 1327-2326, the most iron-poor star known to date. UV-OH lines yield a 1D LTE abundance of [O/Fe]_OH = 3.7 (subgiant case) and [O/Fe]_OH = 3.4 (dwarf case). Using a correction of -1.0 dex to account for 3D effects on OH line formation, the abundances are lowered to [O/Fe] = 2.8 and [O/Fe] = 2.5, respectively, which we adopt. Without 3D corrections, the UV-OH based abundance would be in disagreement with the upper limits derived from the OI triplet lines: [O/Fe]_trip < 2.8 (subgiant) and [O/Fe]_trip < 3.0 (dwarf). We also correct the previously determined carbon and nitrogen abundances for 3D effects. Knowledge of the O abundance of HE 1327-2326 has implications for the interpretation of its abundance pattern. A large O abundance is in accordance with HE 1327-2326 being an early Population II star which formed from material chemically enriched by a first generation supernova. Our derived abundances, however, do not exclude other possibilities such as a Population III scenario.Comment: 13 pages, accepted for publication in ApJ

    Evidence for fast thermalization in the plane-wave matrix model

    Full text link
    We perform a numerical simulation of the classical evolution of the plane-wave matrix model with semiclassical initial conditions. Some of these initial conditions thermalize and are dual to a black hole forming from the collision of D-branes in the plane wave geometry. In particular, we consider a large fuzzy sphere (a D2-brane) plus a single eigenvalue (a D0-particle) going exactly through the center of the fuzzy sphere and aimed to intersect it. Including quantum fluctuations of the off-diagonal modes in the initial conditions, with sufficient kinetic energy the configuration collapses to a small size. We also find evidence for fast thermalization: rapidly decaying autocorrelation functions at late times with respect to the natural time scale of the system.Comment: 5 pages, 5 figures, revtex4 format; v2: minor typos fixed; v3: 8 pages, 9 figures, minor changes, includes a supplement as appeared on PR

    HE0107-5240, A Chemically Ancient Star.I. A Detailed Abundance Analysis

    Full text link
    We report a detailed abundance analysis for HE0107-5240, a halo giant with [Fe/H]_NLTE=-5.3. This star was discovered in the course of follow-up medium-resolution spectroscopy of extremely metal-poor candidates selected from the digitized Hamburg/ESO objective-prism survey. On the basis of high-resolution VLT/UVES spectra, we derive abundances for 8 elements (C, N, Na, Mg, Ca, Ti, Fe, and Ni), and upper limits for another 12 elements. A plane-parallel LTE model atmosphere has been specifically tailored for the chemical composition of {\he}. Scenarios for the origin of the abundance pattern observed in the star are discussed. We argue that HE0107-5240 is most likely not a post-AGB star, and that the extremely low abundances of the iron-peak, and other elements, are not due to selective dust depletion. The abundance pattern of HE0107-5240 can be explained by pre-enrichment from a zero-metallicity type-II supernova of 20-25M_Sun, plus either self-enrichment with C and N, or production of these elements in the AGB phase of a formerly more massive companion, which is now a white dwarf. However, significant radial velocity variations have not been detected within the 52 days covered by our moderate-and high-resolution spectra. Alternatively, the abundance pattern can be explained by enrichment of the gas cloud from which HE0107-5240 formed by a 25M_Sun first-generation star exploding as a subluminous SNII, as proposed by Umeda & Nomoto (2003). We discuss consequences of the existence of HE0107-5240 for low-mass star formation in extremely metal-poor environments, and for currently ongoing and future searches for the most metal-poor stars in the Galaxy.Comment: 60 pages, 16 figures. Accepted for publication in Ap

    Impact of the new solar abundances on the calibration of the PMS binary system RS Cha

    Full text link
    Context: In a recent work, we tried to obtain a calibration of the two components of the pre-main sequence binary system RS Cha by means of theoretical stellar models. We found that the only way to reproduce the observational parameters of RS Cha with standard stellar models is to decrease the initial abundances of carbon and nitrogen derived from the GN93 solar mixture of heavy elements by a few tenths of dex. Aims: In this work, we aim to reproduce the observational properties of the RS Cha stars with stellar evolution models based on the new AGS05 solar mixture recently derived from a three-dimensional solar model atmosphere. The AGS05 mixture is depleted in carbon, nitrogen and oxygen with respect to the GN93 mixture. Methods: We calculated new stellar models of the RS Cha components using the AGS05 mixture and appropriate opacity tables. We sought models that simultaneously satisfy the observations of the two components (masses, radii, luminosities, effective temperatures and metallicity). Results: We find that it is possible to reproduce the observational data of the RS Cha stars with AGS05 models based on standard input physics. From these models, the initial helium content of the system is Y~0.255 and its age is ~9.13 +- 0.12 Myr.Comment: Research note accepted in A&A, 5 pages, 2 figure

    Cosmological Cosmic Rays and the observed Li6 plateau in metal poor halo stars

    Full text link
    Very recent observations of the Li6 isotope in halo stars reveal a Li6 plateau about 1000 times above the predicted BBN abundance. We calculate the evolution of Li6 versus redshift generated from an initial burst of cosmological cosmic rays (CCRs) up to the formation of the Galaxy. We show that the pregalactic production of the Li6 isotope can account for the Li6 plateau observed in metal poor halo stars without additional over-production of Li7. The derived relation between the amplitude of the CCR energy spectra and the redshift of the initial CCR production puts constraints on the physics and history of the objects, such as pop III stars, responsible for these early cosmic rays. Consequently, we consider the evolution of Li6 in the Galaxy. Since Li6 is also produced in Galactic cosmic ray nucleosynthesis, we argue that halo stars with metallicities between [Fe/H] = -2 and -1, must be somewhat depleted in Li6.Comment: 8 pages, 6 figures, version accepted for publication in Ap

    Sulphur and zinc abundances in Galactic stars and damped Lyman-alpha systems

    Full text link
    High resolution spectra of 34 halo population dwarf and subgiant stars have been obtained with VLT/UVES and used to derive sulphur abundances from the 8694.0, 8694.6 A and 9212.9, 9237.5 A SI lines. In addition, iron abundances have been determined from 19 FeII lines and zinc abundances from the 4722.2, 4810.5 ZnI lines. The abundances are based on a classical 1D, LTE model atmosphere analysis, but effects of 3D hydrodynamical modelling on the [S/Fe], [Zn/Fe] and [S/Zn] ratios are shown to be small. We find that most halo stars with metallicities in the range -3.2 < [Fe/H] < -0.8 have a near-constant [S/Fe] = +0.3; a least square fit to [S/Fe] vs. {Fe/H] shows a slope of only -0.04 +/- 0.01. Among halo stars with -1.2 < [Fe/H] < -0.8 the majority have [S/Fe] ~ +0.3, but two stars (previously shown to have low [alpha/Fe] ratios) have [S/Fe] ~ 0. For disk stars with [Fe/H] > -1, [S/Fe] decreases with increasing [Fe/H]. Hence, sulphur behaves like other typical alpha-capture elements, Mg, Si and Ca. Zinc, on the other hand, traces iron over three orders of magnitude in [Fe/H], although there is some evidence for a small systematic Zn overabundance ([Zn/Fe] ~ +0.1) among metal-poor disk stars and for halo stars with [Fe/H] < -2.0. Recent measurements of S and Zn in ten damped Ly-alpha systems (DLAs) with redshifts between 1.9 and 3.4 and zinc abundances in the range -2.1 < [Zn/H] < -0.15 show an offset relative to the [S/Zn] - [Zn/H] relation in Galactic stars. Possible reasons for this offset are discussed, including low and intermittent star formation rates in DLAs.Comment: Accepted for publication in A&A. 16pages; 9 figure
    corecore